
Applied GIS ISSN: 1832-5505

 Vol-9 Issue-04 Dec 2021

1

Symbolic Model Validation for Component Connectors Based on
Channels

P.Beersheba 1, Ch.Ambedkar 2,

Assistant Professor 1,2,

Department of CSE, SRK INSTITUTE OF TECHNOLOGY ENIKEPADU

VIJAYAWADA

Mail Id : shebapolimetla@gmail.com, Mail id : rahul59985@gmail.com,

Abstract

This study details the theoretical underpinnings and empirical

findings of a model checker for channel-network-modeled

component connections in the Reo calculus. To reason about the

data flow and coordination rules in a network, the specification

formalisms use a branching time logic. The Model checking for

CTL-like logics is based on versions of traditional automata-based

methodologies. In this implementation, binary decision diagrams

are used to symbolically depict the network and the available I/O-

operations. The effectiveness of our model checker has been

shown by applying it to a few cases

Keywords: binary decision procedures, data streams,

constraint automata, and branching time

logicDiagrams

introduction

Over the last 15 years, several coordination languages

and models have emerged, each of which offers a

formal description of the glue code used to connect

components and which may be used as a springboard

for formal verification. For the exogenous

coordination language Reo [2], we focus on the latter

component here. Through a chain of operations that

generate channel instances and connect them in

(network) nodes, Reo's glue code is acquired as a

network of channels.

Reo network semantics have been supplied in a

variety of coherent forms.

Accept and offer predicates codify whether and which

data items may be written or read at a node,

respectively, across a variety of network setups, as

described in [2]. The timed data stream semantics of

[5] is demonstrated to be compatible with the

operational semantics of a Reo network provided in

[6] using a version of labelled transition systems

called constraint automata. While Reo is a beautiful

formalism for synthesizing component connections

using simple composition operators, it may be

challenging to make sense of Reo networks that have

numerous nodes and channels. Therefore, a vital part

of using the Reo framework for complicated

situations is having tool support for assessing the

coordination mechanism described by a Reo network.

The (bi)simulation and language equivalence testing

algorithms in [6] and the temporal logic specification

algorithms in [3,10] are examples of verification

algorithms for Reo networks based on their constraint

automata semantics.

Reo Constraint and automata

Here, we provide a high-level overview of Reo, a

coordination language with a semantics based on

operational constraint automata.References [2,6]

provide further information. In Reo, an exogenous

coordination language, complicated component

connections are formed in a compositional way by

organizing in a network of channels. When it comes

to coordinating and interacting with other nodes in a

network, the glue code is provided by Reo networks.

Reo uses a loose concept of channels and allows for

any form of peer-to-peer interaction. The channels in

a Reo network need to have a user-defined semantics

and two channel endpoints that are either sink or

source ends. Data is written into the channel at the

source end and read out at the sink end.

mailto:@gmail.com
mailto:rahul59985@gmail.com

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-04 Dec 2021

2

Three basic kinds of channels that will be used as
examples are graphically shown in the image above.
There is a source and a drain in synchronous and FIFO
channels, respectively. Writing and reading must be
done at the same time through synchronous
channels.done at the same time. The FIFO channel
seen in the center has a single buffer cell and is hence
referred to as a FIFO1 channel. As long as there is no
data in the buffer, writing from the source end is
permitted. When you write d, it is saved in the buffer.
If the buffer is full, data may be read from the sink
end, and the item will be removed from the buffer.
The synchronous drain provides a powerful route for
the development of sophisticated Reo coordination
principles. It has two inputs but no outputs. Both ends
of a data item are being erased at once, making
simultaneous writing impossible.

Sets of channel terminations are represented by the
nodes in a Reo network. There are three types of
nodes that result from Reo's join operator: source
nodes, sink nodes, and mixed nodes. Each type is
determined by whether or not all of the channel ends
that coincide on a node A are source ends, sink ends,
or a combination of both. Connecting components to
a network via input and output ports, or source and
sink nodes. The admixed vertices Logic that Forks in
Real Time Here, we provide a temporal logic based on
branching time, which may be used to reason about
the control and data flow in a constraint automaton.
This reasoning, known as Branching Time, CTL [11,12],
PDL [15], and TDSL [3,9,4] are all components of
Stream Logic (BTSL). Similar to CTL, formulae may
employ the route quantifiers and to refer to the
configurations of a component connector (states of a
constraint automaton) using atomic propositions ap
AP. Until, a standard operator for expressing path
attributes, or the PDL/TSDL-like modality __, where is
a regular expression providing sequences of I/O-
operations at the nodes, are the two most common
ways to define a path. BTSL, you'll need a tuple (AP,N)
where AP is a collection of atomic propositions and N
is a set of nodes. BTSL syntax is divided into three
tiers, marked by the capital Greek letters and for state
formulas, the tiny greek letter for run formulas, and
the letter for normal I/O-stream expressions. Model

Validation in Symbolic BTSL 4 As input, the BTSL
model validation issue requires a Reo network, which
may also includes a BTSL formula that has to be
verified, and constraint automata that describe the
interfaces of the components that make up the links
between the network's source and sink nodes.
Connected system components' automata to the
network's sink or source nodes, the environment in
which the network functions is described. Since
certain transition instances (concurrent I/O-
operations) may become impossible owing to the
behavioral interfaces of the components, they may
limit the non determinism in the automata for the
network. When node A, which is both a sink and a
source, is connected to a port on a component, A is
said to be a mixed node. As a result, the component's
automata might also reduce the number of possible
terminal states. When these automata are ignored,
the analysis will take into consideration all possible
interactions between the sink and source nodes even
if nothing is known about the prospective behaviors
of the components that will be managed by the
network.

network, maybe within of the ecosystem provided by
the automata for the components.
The second stage is to prove or disprove that a certain
BTSL formula is true for all beginning states of the
created constraint automata. Yes, without a doubt
forms of formulas The model checker may either
provide a witness (such as a run with |=) or a
counterexample (such as a run with _|=) for the
formula being tested. We provide a symbolic BTSL
model checker in the next section. After briefly
outlining the fundamentals of the BTSL model
checking technique, we move on to describe the
symbolic implementation of this method. Five
Instances, With Outcomes A handful of instances
were run via the BTSL model checker. Here, we will
report on There are two examples of this. All testing
was performed on a Pentium IV with 1.8GHz of
processing power and 1.5GB of RAM running
Mandriva Linux with kernel 2.6.12. The program was
developed in C++ and GCC4.0.3 was used to build it;

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-04 Dec 2021

3

the JINC [18] library was used to create the binary
decision diagrams. 5.1 (Philosophers at Dinner) as an
Example The first provides a Reo model of the classic
philosophers' dinner (see Fig. 5 in [1]).

...to the philosopher's right. An FIFO1 channel and

synchronous drain represent the chopsticks in this

analogy. Figure 6 depicts the philosopher and

chopstick interface constraint automata.

In Table 1, we see how effectively the symbolic join-

operation can be used to build the

BDDrepresentation of the constraint automaton A for

the whole system. The "size" column provides a count

of philosophers. The In the table below, "time"

represents the amount of time required during

synthesis, whereas "reachable time" indicates the

amount of time required to calculate the reachable

fragment of A. The other two columns detail the

largest BDD created throughout the symbolic

computation and the size of the BDD generated for

A.Since there is a run in which all philosophers accept

the left chopstick and then wait indefinitely for the

missing right chopstick, the second formula cannot

hold. Using a backward iteration of 798 times, we

have discovered this impasse. analysis. The stalemate

may be identified in only 403 steps and 13.92 seconds

using forward analysis to compute the reachable

section first. Mutual exclusion: Example 5.2 The

component connection seen in Fig. 7t is used as an

example two.

hat provides a critical action bottleneck of no more

than k processes per time instance for a set of n

parallel processes (P1,..., Pn)

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-04 Dec 2021

4

.
In this case, we assume that each component's Pi has

a behavioral interface represented by the constraint

automaton shown in Fig. 7. The generated BDD-

representation findings are summarized in Table 3.

where n is the total number of processes and k is the

maximum permissible critical section occupancy.

There are more than 5 10119 possible configurations

in this CA if you have 200 processes and k = 60.

The Final Six

The study aimed to provide light on the reasoning

behind and operation of our Reo network model

checker. Two examples have been provided to

demonstrate the speed with which our model

verification method can process extremely large

networks with up to 101200 configurations. We feel

that our model checker offers a significant

contribution for formal reasoning regarding exoge

neous coordination models, especially in light of the

vast variety of applications of the Reo framework

(see, for example, [13,20,9]). Our implementation will

be expanded to reason about real-time constraints

using the logic TDSL [3] or a branching time version

thereof, and about dynamic reconfigurations using

the logic considered in [10] or other formal

frameworks for Reo's dynamic operations, in addition

to further efficiency optimizations and case studies.

References

[1] F. Arbab, Abstract Behavior Types: A Foundation

Model for Components and Their Composition, In

[7],33-70, 2003.

[2] F. Arbab, Reo: A Channel-based Coordination

Model for Component Composition, Mathematical

Structures in Computer Science, 14(3):1-38, 2004.

[3] F. Arbab and C. Baier and F. de Boer and J. Rutten,

Models and Temporal Logics for Timed Component

Connectors, In Proc. SEFM’04, IEEE CS Press, 2004.

[4] F. Arbab and C. Baier and F. de Boer and J. Rutten,

Models and Temporal Logics for Timed Component

Connectors, Software and Systems Modelling (to

appear), 2006.

[5] F. Arbab and J.J.M.M. Rutten, A coinductive

calculus of component connectors, In Proc. 16th

WADI

volume 2755 of LNCS, pages 35-56, 2003.

[6] C. Baier and M. Sirjani and F. Arbab and J.J.M.M.

Rutten, Modeling Component Connectors in Reo by

Constraint Automata, Science of Computer

Programming, 61:75-113, 2006.

[7] F.S. de Boer and M.M. Bonsangue and S. Graf and

W.-P. de Roever, Formal Methods for Components

and Objects, LNCS 2852, Springer, 2003.

[8] R. Bryant, Graph-Based Algorithms for Boolean

Function Manipulation, IEEE Transactions on

Computers, C-35, 1986.

[9] D. Clarke and D. Costa and F. Arbab, Modeling

Coordination in Biological Systems, In Proc. of the

Int. Symposium on Leveraging Applications of

Formal Methods, 2004.

[10] Dave Clarke, Reasoning about Connector

Reconfiguration II: Basic reconfiguration Logic, In

Proc. FSEN’05, Teheran, Electronic Notes in

Theoretical Computer Science, 2005.

[11] E. Clarke and E. Emerson and A. Sistla,

Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications, ACM

Transactions on Programming Languages and

Systems, 8(2):244-263, April 1986.

[12] E. Clarke and O. Grumberg and D. Peled, Model

Checking, MIT Press, 1999.

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-04 Dec 2021

5

[13] N. Diakov and F. Arbab, Compositional

Construction ofWeb Services Using Reo, In Proc.

International Workshop on Web Services: Modeling,

Architecture and Infrastructure (ICEIS 2004), Porto,

Portugal, April 13-14, 2004.

[14] E. Emerson and C. Lei, Modalities for Model

Checking: Branching Time Strikes Back (extended

abstract), In Proc. 12th Annual ACM Symposium on

Principles of Programming Languages (POPL), pages

84-96, SIGPLAN, ACM Press, 1985.

[15] M. Fischer and J. Ladner, Propositional dynamic

logic of regular programs, Journal of Computer and

Systems Sciences, 18:194-211, 1979.

[16] G. Hachtel and F. Somenzi, Logic Synthesis and

Verification Algorithms, Kluwer Academic

Publishers, 1996.

[17] K. McMillan, Symbolic Model Checking, Kluwer

Academic Publishers, 1993.

[18] J. Ossowski, JINC, a bdd library (to be

published), www.jossowski.de

.

[19] I. Wegener, Branching Programs and Binary

Decision Diagrams. Theory and Applications,

Monographs on Discrete Mathematics and

Applications, SIAM, 2000.

http://www.jossowski.de/

